
Package: nestr (via r-universe)
August 23, 2024

Title Build Nesting or Hierarchical Structures

Version 0.1.2.9000

Description Facilitates building a nesting or hierarchical structure
as a list or data frame by using a human friendly syntax.

License MIT + file LICENSE

Encoding UTF-8

Language en-US

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.1

Imports magrittr, rlang, vctrs, tidyselect

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

Repository https://emitanaka.r-universe.dev

RemoteUrl https://github.com/emitanaka/nestr

RemoteRef HEAD

RemoteSha be67430d7e3d6f66d118d1bf613e0e150bfadd60

Contents

amplify . 2
nest_in . 3

Index 5

1

2 amplify

amplify Amplify the data frame with a given structure

Description

The dplyr::mutate function modifies, deletes or creates a new column for a data frame without al-
tering the number of rows. The amplify function can create new columns which generally increase
(or amplify) the size of the row dimension. The observations in other columns are duplicated.

Usage

amplify(.data, ...)

S3 method for class 'data.frame'
amplify(
.data,
...,
.keep = c("all", "used", "unused", "none"),
.before = NULL,
.after = NULL

)

Arguments

.data An object with the data.

... Name-value pairs.

.keep, .before, .after
Use to control which columns are retained and how it is ordered in the output.
See documentation of dplyr::mutate for more information.

Details

If you are familiar with gene replication process then you can recall these functions in genetic terms;
an amplified gene is a duplication of the original while a mutated gene modifies the original state.

Value

Returns a data frame.

Examples

df <- data.frame(x = 1:3, y = c("a", "b", "b"))
amplify(df, z = nest_in(y, "a" ~ 5,

"b" ~ 3))

nest_in 3

nest_in Create a nested structure

Description

This function results in a two column data frame with nested structure. Currently only one parent
is supported and child is only specified by giving the number of levels. (This will change shortly).

Usage

nest_in(
x,
...,
prefix = "",
suffix = "",
distinct = FALSE,
leading0 = FALSE,
compact = TRUE,
keyname = NULL

)

Arguments

x A vector where each entry is the level of a parent. It may be a factor or character.
If character, levels are ordered alphanumerically.

... A single integer, character vector or sequence of two-sided formula. If a single
integer or character vector then each parent will have children specified by the
given value. If it is sequence of two-sided formula, then the left hand side (LHS)
specifies the level as an integer or character. E.g. 1 means the first level of the
parent vector. If it is a character then it is assumed that it corresponds to the label
of the parental level. Vector is supported for LHS. The right hand side (RHS)
can only be an integer or a character vector.

prefix The prefix for the child labels.

suffix The suffix for the child labels.

distinct A logical value to indicate whether the child labels across parents should be
distinct. The labels are only distinct if the RHS of the formula is numeric.

leading0 By default it is FALSE. If TRUE, this is the same as setting 0 or 1. If a positive
integer is specified then it corresponds to the minimum number of digits for
the child labels and there will be leading zeros augmented so that the minimum
number is met.

compact A logical value to indicate whether the returned list should be a compact rep-
resentation or not. Ignored if distinct is TRUE since it’s not possible to make
compact representation if unit labels are all distinct.

keyname The name of the parent variable. It’s usually the key that connects the output to
another table.

4 nest_in

Value

A named list where the entry corresponding to the child levels and the names correspond to parental
levels.

Examples

Each element in the supplied the vector has 4 child.
nest_in(1:3, 4)

prefix and suffix can be added to child labels
along with other aesthesitics like leading zeroes
with minimum number of digits.
nest_in(1:3, 10, prefix = "id-", suffix = "xy", leading0 = 4)

you can specify unbalanced nested structures
nest_in(2:4,

1 ~ 3,
2 ~ 4,
3 ~ 2)

A `.` may be used to specify "otherwise".
nest_in(c("A", "B", "C", "D"),

2:3 ~ 10,
. ~ 3)

The parental level can be referred by its name or vectorised.
nest_in(c("A", "B", "C"),

c("A", "B") ~ 10,
"C" ~ 3)

Index

amplify, 2

nest_in, 3

5

	amplify
	nest_in
	Index

